

T:

W:

E:

+44 0113 887 8380

https://appcheck-ng.com

info@appcheck-ng.com

Security Assessment

Prepared For

GraphQL Example

Document Revision

Initial Report Prepared By: AppCheck-NG Version: 1.0

Reviewed By: n/a

Assessment Schedule

Assessment Performed on Tuesday 09 June 2020

Report Prepared on Tuesday 09 June 2020

2

1. CONTENTS

1. Contents ...2

2. Project Overview ...3

3. Summary of Vulnerabilities: High / Medium ...4

3.1. Graphical Summary .. 5

3.2. HIGH Impact Vulnerabilities ... 6

3.3. Medium Impact Vulnerabilities ... 7

4. Assessment Results ...8

4.1. Server Side JavaScript injection (error induction check) ... 8

4.2. NoSQL Injection (MongoDB Server-Side JS Execution) .. 10

4.3. Insecure Direct Object Reference (IDOR) .. 13

4.4. Slowloris Denial of Service (DoS) ... 15

4.5. Possible Sensitive Data Disclosure (Credentials) ... 17

4.6. GraphQL Introspection Successful ... 18

4.7. GraphQL Endpoint Detected .. 22

5. Extended Information .. 24

5.1. Port Scan .. 24

6. Appendix A: Web Application Defensive Strategies .. 25

6.1. Validating Input .. 25

6.2. Authentication ... 27

3

2. PROJECT OVERVIEW

The following web applications were defined within the scope for this assessment:

Application URLs / IP Addresses

http://192.168.0.70:4000/graphql?

4

3. SUMMARY OF VULNERABILITIES: HIGH / MEDIUM

Vulnerability Impact Ratings

HIGH

HIGH: Successful exploitation could lead to highly privileged access to the target host or cause a denial
of service condition.

Vulnerabilities are labelled "HIGH" severity if they have a CVSS base score of 7.0 -10.0.

Medium

Medium: Exploitation of the vulnerability will not directly lead to privileged access to the host, service
or data. However, vulnerabilities with a Medium impact can often be combined with other flaws to
elevate their impact.

Vulnerabilities will be labelled "Medium" severity if they have a base CVSS score of 4.0-6.9

Low

Low: This impact rating is assigned to vulnerabilities that, when exploited in isolation, have a negligible
impact on security. Typically vulnerabilities that disclose information that may be useful to the
attacker are considered to have a low impact.

Vulnerabilities are labelled "Low" severity if they have a CVSS base score of 0.0-3.9.

5

3.1. GRAPHICAL SUMMARY

Key findings have been ranked and positioned in the following table according to the relative risk or probability of exploit.
Vulnerabilities are split into 3 impact categories: High, Medium and Low. Risk is calculated by comparing the impact vs. the
probability of exploit which is represented using colour coding.

0

1

2

3

High Medium Low

1

2

1

N
u

m
b

e
r

o
f

V
u

ln
e

ra
b

ili
ti

e
s

Impact

Vulnerability Summary

High

Medium

Low

Probability

6

3.2. HIGH IMPACT VULNERABILITIES

The following vulnerabilities have been assigned a HIGH impact rating. Successful exploitation of these vulnerabilities could lead to highly privileged access to the affected
host or data or a denial of service condition.

Impact / Ref Description Affected Hosts

CVSS: 9.4

Impact/Prob:
High/High

Server Side JavaScript injection (error induction check)

The affected application appears to be vulnerable Server-Side JavaScript injection. This vulnerability
is sometimes be referred to as "NoSQL Injection" depending on the root cause of the vulnerability.

http://192.168.0.70:4000

CVSS: 9.4

Impact/Prob:
High/High

NoSQL Injection (MongoDB Server-Side JS Execution)

The affected application appears to be vulnerable to NoSQL Injection.

http://192.168.0.70:4000

CVSS: 6.8

Impact/Prob:
High/Medium

Insecure Direct Object Reference (IDOR)

Insecure direct object references (IDOR) is a type of access control vulnerability whereby the
attacker is able to access restricted data by manipulating a client supplied identifier.

http://192.168.0.70:4000

7

3.3. MEDIUM IMPACT VULNERABILITIES

The following vulnerabilities have been assigned a Medium impact rating.

Impact / Ref Description Affected Hosts

CVSS: 6.8

Impact/Prob:
Medium/High

Slowloris Denial of Service (DoS)

Slowloris works by opening multiple connections to the targeted web server and keeping them open
as long as possible. It does this by continuously sending partial HTTP requests, none of which are
ever completed. The attacked servers open more and connections open, waiting for each of the
attack requests to be completed.

http://192.168.0.70:4000

8

4. ASSESSMENT RESULTS

4.1. SERVER SIDE JAVASCRIPT INJECTION (ERROR INDUCTION CHECK)

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://192.168.0.70:4000

The affected application appears to be vulnerable Server-Side JavaScript injection. This vulnerability is sometimes be referred to as "NoSQL Injection" depending on the
root cause of the vulnerability.

Server-side code injection vulnerabilities occur when user controllable input is included within a string which is evaluated by a code interpreter. If the user supplied data is
not strictly validated, an attacker can exploit this flaw to inject arbitrary code that will be executed by the server.

JavaScript code injection flaws most commonly occur in NoSQL applications that support the use of JavaScript within the database query language. Its also common to
find JavaScript injection within applications written in NodeJS where user supplied input is passed to a dangerous function such as eval(), setTimeout(), setInterval() and
Function().

Typically this vulnerability is considered high impact. However, in some cases the JavaScript interpreter may be restricted to a small subset of functions which could limit
the available attack surface.

For example, when injecting into a MongoDB (above version 2.4) search query, the attacker would typically be restricted to reading data from documents within the
queried collection or causing a denial of service condition. Other JavaScript injections, such as those found in NodeJS applications could be exploited to gain full control of
the affected server via system command execution.

4.1.1. REMEDIATION

When possible user controllable input should not be included within dynamically evaluated code. Instead, an alternative method should be sought to keep data and code
separate. If this isn't possible, data should be strictly validated against a whitelist of known good input.

4.1.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://192.168.0.70:4000 /graphql payload.json.variables.book__id

9

4.1.3. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/graphql [param: payload.json.variables.book__id]

Technical Details

The flaw was detected by injecting the following JavaScript payload designed to raise an error containing the token nbABZunVJG when successfully executed by the
server.

'-eval(String.fromCharCode(110,98,65,66,90,117,110,86,74,71))-'

Example Exploit

The following exploit payload was used to execute JSON.stringify(this) and return the result:

'-eval('result'+(function () {var x=JSON.stringify(this),y='';for(i=0;i<x.length;i++){y+=String(x.charCodeAt(i));y+='s'}return y})() +'endresult')-'

Exploit output:

{"__lastres__":{},"obj":{"_id":{"$oid":"5eb9391c82fcb704cc675843"},"name":"The
Stand","genre":"Horror","authorId":"5eb9390982fcb704cc675842","__v":0},"fullObject":true,"__returnValue":false}

10

4.2. NOSQL INJECTION (MONGODB SERVER-SIDE JS EXECUTION)

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://192.168.0.70:4000

The affected application appears to be vulnerable to NoSQL Injection. NoSQL Injection vulnerabilities occur when client supplied data is included within a NoSQL query in
an insecure way. There are several reasons a NoSQL Injection flaw can occur, the most common cases are detailed below.

User Controllable Query

This variant of NoSQL injection occurs when the target application includes JSON properties submitted by the user directly within a NoSQL query. For example, consider a
NodeJS & MongoDB application that executes the following query in order to validate a users credentials:

User.find({username: username, password: password});

The above query will return documents (records) if both the username and password values match a document in the database. If a match is found, the user is deemed to
have entered valid credentials and is successfully authenticated.

Due to the compatibility between NoSQL queries and objects used in a variety of programing languages (e.g. JavaScript JSON objects) it can be convenient to read
property values from a user supplied object then include them directly within the database query. For example, lets assume that the username and password values in
the above query are read from a JSON object submitted via the following REST API request:

POST /user/login HTTP/1.1
Host: some.vulnerable.server
Content-Type: application/json
...

{"username":"lucas.radebe", "password":"Th3Chi3f1992"}

The code to build the query may look something like the following:

let query = {
 username: req.body.username, // Username read from API request
 password: req.body.password // Password read from API request
}

User.find(query, function(){ ... log user in...}) // Query and authenticate the user.

In this example the JSON property values are read from the user submitted object and included within the query. If the user entered valid credentials he/she is
authenticated.

However, consider the attacker sends the following request instead:

POST /user/login HTTP/1.1
Host: some.vulnerable.server
Content-Type: application/json
...

{"username":"lucas.radebe", "password":{"$ne":"foobar"}}

11

In this case, the password property has been changed from a simple string to a object containing a comparison operator {"$ne":"foobar"}. Now the query is modified to
return records where the username is "lucas.radebe" and the password is not equal ($ne) to "foobar":

User.find({username: "lucas.radebe", password: {"$ne":"foobar"}});

Providing the user "lucas.radebe" does not have plaintext password equal to "foobar", the expected password validation process is bypassed and the attacker is
authenticated.

The impact of this flaw depends on the query, NoSQL database type and data stored within referenced documents. For example, its typically possible to extract data held
within the database by exploiting this flaw.

Note that since JSON objects used within REST API's are compatible with NoSQL queries, its not uncommon to find the developer has built the entire query client-side and
then passes it directly into the server side query function.

Injection into the $where clause

Many NoSQL platforms such as MongoDB support the use of JavaScript within queries via the $where clause. In many ways this feature could allow NoSQL queries to feel
more natural to a developer who is used to relational SQL databases that make use the WHERE clause.

For example, consider the following Python Flask application, the code below allows users to lookup member information by supplying an "id" value:

@app.route("/members")
def lookup_member():

 id = request.args.get("id", None) # id value from the user

 results = db.users.find(
 {
 "$where": "function(){ return obj.id === " + id + "}" # Vulnerable
 }
)

The code above is vulnerable since it builds the JavaScript function in insecure way. By including user/attacker controllable input within the JavaScript string, it is possible
for the attacker to manipulate the code executed by the server via the $where clause. For example, accessing http://vulnerable_server/members?id=1||evil_code will
result in the following code being executed by the server:

function(){
 return obj.id === 1 || evil_code
}

Depending on the server type evil_code could carry out a number of actions including accessing database data, modifying records, shutting the server down or executing
system commands.

AppCheck will attempt to safely exploit this flaw to extract a list of document properties and list them within the details section of this finding.

4.2.1. REMEDIATION

When possible user controllable input should not be included within dynamically evaluated code. Instead, an alternative method should be sought to keep data and code
separate. If this isn't possible, data should be strictly validated against a whitelist of known good input.

12

4.2.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://192.168.0.70:4000 /graphql payload.json.variables.book__id

4.2.3. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/graphql [param: payload.json.variables.book__id]

Exploit

This vulnerability was exploited to provide proof of concept evidence to support the finding. The exploit injects a JavaScript payload to extract properties from the target
environment. In this case, the first 10 properties are enumerated from the obj object.

Total number of properties: 5

Property Names:

_id
name
genre
authorId
__v

Technical Details

The vulnerability was detected by injecting JavaScript code designed to trigger a specific time delay from the server.

For example, injecting the following payloads via the payload.json.variables.book__id parameter will trigger a 1 and 10 second delay respectively:

if(typeof QgdOJ==='undefined'){var a=new Date();do{var b=new Date();}while(b-a<1000);QgdOJ=1;}

if(typeof OHzJL==='undefined'){var a=new Date();do{var b=new Date();}while(b-a<10000);OHzJL=1;}

To ensure the best possible accuracy, injected time delays were measured over several high-low cycles.

The log below shows the injected delay and measured server response time:

Confirmation cycle 0: Response delay: 10.22 (injected: 10.00)
Confirmation cycle 1: Response delay: 1.16 (injected: 1.00)
Confirmation cycle 2: Response delay: 10.18 (injected: 10.00)
Confirmation cycle 3: Response delay: 10.12 (injected: 10.00)
Confirmation cycle 4: Response delay: 1.12 (injected: 1.00)
Confirmation cycle 5: Response delay: 1.09 (injected: 1.00)
Confirmation cycle 6: Response delay: 1.09 (injected: 1.00)
Confirmation cycle 7: Response delay: 10.10 (injected: 10.00)

13

4.3. INSECURE DIRECT OBJECT REFERENCE (IDOR)

CVSS Score: 6.8 CVSS Vector: AV:N/AC:L/Au:S/C:C/I:N/A:N Impact/Probability: High/Medium

Affected: http://192.168.0.70:4000

Insecure direct object references (IDOR) is a type of access control vulnerability whereby the attacker is able to access restricted data by manipulating a client supplied
identifier. For example, consider an application that loads a users profile information using a URL such as https://website/profile?user_id=50. In this example, the supplied
user_id value directly references the user profile in the backend database. A IDOR vulnerability occurs when the attacker is able to change the supplied value to access
another users data, e.g. https://website/profile?user_id=51.

IDOR vulnerabilities can occur for a variety of reasons including direct database references, predictable file names and other cases where the attacker is able to
manipulate a reference value to bypass access controls.

From OWASP Top 10 2013 (part or Broken Access Control in later versions):

A direct object reference occurs when a developer exposes a reference to an internal implementation object, such as a file, directory, or database key. Without an access
control check or other protection, attackers can manipulate these references to access unauthorized data.

Note: This finding may be a false positive if the application permits access to the identified data by design.

References

• https://www.troyhunt.com/owasp-top-10-for-net-developers-part-4/

• https://wiki.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References_(OTG-AUTHZ-004)

4.3.1. REMEDIATION

Ensure proper access controls are enforced to prevent direct access to restricted data.

4.3.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://192.168.0.70:4000 /graphql payload.json.variables.user__id

https://www.troyhunt.com/owasp-top-10-for-net-developers-part-4/
https://wiki.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References_(OTG-AUTHZ-004)

14

4.3.3. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/graphql [param: payload.json.variables.user__id]

Technical Details

AppCheck detected a possible IDOR vulnerability within the target application.

Rationale

Under normal operation the value 102 was submitted via the payload.json.variables.user__id parameter. The following potentially sensitive data was identified within
the page:

Data Type/Description: Email addresses were found within the page.

Example Data:

nickb@appcheck-ng.com

By changing the payload.json.variables.user__id parameter value to 100 the same data type was returned but the values were different

New Data Value:

garyo@appcheck-ng.com, garys_friend@appcheck-ng.com

Other Examples

Modified Value Data

101 grahamb@appcheck-ng.com, grahams_friend@appcheck-ng.com

15

4.4. SLOWLORIS DENIAL OF SERVICE (DOS)

CVSS Score: 6.8 CVSS Vector: AV:N/AC:M/Au:N/C:P/I:P/A:P Impact/Probability: Medium/High

Affected: http://192.168.0.70:4000

Slowloris works by opening multiple connections to the targeted web server and keeping them open as long as possible. It does this by continuously sending partial HTTP
requests, none of which are ever completed. The attacked servers open more and connections open, waiting for each of the attack requests to be completed.

Periodically, the Slowloris sends subsequent HTTP headers for each request, but never actually completes the request. Ultimately, the targeted server's maximum
concurrent connection pool is filled, and additional (legitimate) connection attempts are denied.

By sending partial, as opposed to malformed, packets, Slowloris can easily slip by traditional Intrusion Detection systems.

Known Affected Configurations

• Apache 1.x, 2.x (CVE-2007-6750)

• Apache Tomcat 7.0.x (CVE-2012-5568)

• All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0 (CVE-2018-12122)

• Flask, development mode.

4.4.1. REMEDIATION

While there are no reliable configurations of the affected web servers that will prevent the Slowloris attack, there are ways to mitigate or reduce the impact of such an
attack.

In general, these involve increasing the maximum number of clients the server will allow, limiting the number of connections a single IP address is allowed to make,
imposing restrictions on the minimum transfer speed a connection is allowed to have, and restricting the length of time a client is allowed to stay connected.

In the Apache web server, a number of modules can be used to limit the damage caused by the Slowloris attack; the Apache modules mod_limitipconn, mod_qos,
mod_evasive, mod security, mod_noloris, and mod_antiloris have all been suggested as means of reducing the likelihood of a successful Slowloris attack. Since Apache
2.2.15, Apache ships the module mod_reqtimeout as the official solution supported by the developers.

Other mitigating techniques involve setting up reverse proxies, firewalls, load balancers or content switches.

Administrators could also change the affected web server to software that is unaffected by this form of attack. For example, lighttpd and nginx do not succumb to this
specific attack.

16

4.4.2. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/

See Also

https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/

Contents

Test Started: 09/06/2020 - 12:15:02
Test Ended: 09/06/2020 - 12:17:18
Socket timeout appears to be set to 125.026695013 seconds, for the baseline request
Socket timepout was 136.082692862 seconds, for the payload request
Delay in response between the base line request and payload request was 11.0556797981 seconds

Summary

The web server appears to be vulnerable to a Slowloris DoS attack

https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/

17

4.5. POSSIBLE SENSITIVE DATA DISCLOSURE (CREDENTIALS)

CVSS Score: 5.0 CVSS Vector: AV:N/AC:L/Au:N/C:P/I:N/A:N Impact/Probability: Info/Medium

Affected: http://192.168.0.70:4000

The application appears to disclose sensitive data within the servers response. AppCheck analyses responses and applies pattern matching rules to identify potential data
disclosures. You should review this finding to determine if the data is sensitive and erroneously disclosed.

4.5.1. REMEDIATION

You should review the disclosed data to determine if it is sensitive and accessible in a way that should be restricted and if so take appropriate steps to secure the data.

4.5.2. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/graphql

Technical Details

The JSON response appears to include sensitive properties (Matching password).

Matching Data

{"data":{"user":{"id":102,"email":"nickb@appcheck-ng.com","password":"70ccd9007338d6d81dd3b6271621b9cf9a97ea00","first_name":"Dr","last_name":"Nick","friends":[]}}}

18

4.6. GRAPHQL INTROSPECTION SUCCESSFUL

 Impact/Probability: Info/Info

Affected: http://192.168.0.70:4000

A GraphQL schema has a built-in introspection system that publishes the schema's structure. AppCheck attempts to enumerate all available queries via introspection so
that they can be audited for security flaws. This finding is emitted when a GraphQL endpoint is detected and introspection is attempted.

4.6.1. REMEDIATION

This finding is presented as informational.

4.6.2. TECHNICAL ANALYSIS

Example: http://192.168.0.70:4000/graphql

Technical Details

The following GraphQL queries, mutations and subscriptions were enumerated via introspection:

GraphQL Query 0.

Query:

query RootQueryType($author__id: ID, $book__id: ID){
 book(id: $book__id){
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 books{
 id
 name
 genre
 }
 }
 }
}

Variables:

{"book__id": "5edf5e5bdbc63a75dc07ad1fGARY", "author__id": "5edf7a06951a931accf1555b"}

GraphQL Query 1.

19

Query:

query RootQueryType($author__id: ID){
 author(id: $author__id){
 id
 name
 age
 books{
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 }
 }
 }
}

Variables:

{"author__id": "5edf7a06951a931accf1555b"}

GraphQL Query 2.

Query:

query RootQueryType($author__id: ID){
 books{
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 books{
 id
 name
 genre
 }
 }
 }
}

Variables:

{"author__id": "5edf7a06951a931accf1555b"}

GraphQL Query 3.

Query:

query RootQueryType($user__id: Int){
 user(id: $user__id){
 id
 email
 password
 first_name
 last_name

20

 friends{
 id
 email
 password
 first_name
 last_name
 }
 }
}

Variables:

{"user__id": 102}

GraphQL Query 4.

Query:

query RootQueryType{
 users{
 id
 email
 password
 first_name
 last_name
 friends{
 id
 email
 password
 first_name
 last_name
 }
 }
}

Variables:

{}

GraphQL Query 5.

Query:

query RootQueryType($author__id: ID){
 authors{
 id
 name
 age
 books{
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 }
 }
 }
}

21

Variables:

{"author__id": "5edf7a06951a931accf1555b"}

GraphQL Query 6.

Query:

mutation Mutation($author__id: ID, $addAuthor__name: String!, $addAuthor__age: Int!){
 addAuthor(name: $addAuthor__name, age: $addAuthor__age){
 id
 name
 age
 books{
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 }
 }
 }
}

Variables:

{"addAuthor__age": 100, "addAuthor__name": "daoqvjnp", "author__id": "5edf7a06951a931accf1555b"}

GraphQL Query 7.

Query:

mutation Mutation($author__id: ID, $addBook__name: String!, $addBook__genre: String!, $addBook__authorId: ID){
 addBook(name: $addBook__name, genre: $addBook__genre, authorId: $addBook__authorId){
 id
 name
 genre
 author(id: $author__id){
 id
 name
 age
 books{
 id
 name
 genre
 }
 }
 }
}

Variables:

{"addBook__name": "kalcjdne", "addBook__authorId": "osqtkfvb", "author__id": "5edf7a06951a931accf1555b", "addBook__genre": "bzfzjzzy"}

22

4.7. GRAPHQL ENDPOINT DETECTED

 Impact/Probability: Info/Info

Affected: http://192.168.0.70:4000

A GraphQL endpoint was detected. AppCheck will attempt to enumerate and test GraphQL queries for vulnerabilities.

4.7.1. REMEDIATION

This finding is presented as informational.

4.7.2. TECHNICAL ANALYSIS

Example: Messages

--->

POST /graphql HTTP/1.1
Content-Length: 133
Host: 192.168.0.70:4000
Accept: application/json
Connection: close
Referer: http://192.168.0.70:4000/
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36
Content-Type: application/json
Accept-Encoding: Identity

{"query": "query detect($name: String!){\n\t__type(name:$name){\n\t name\n\t description\n\t}\n}", "variables": {"name": "String"}}

<---

HTTP/1.1 200 OK
Content-Length: 235
X-Powered-By: Express
Date: Tue, 09 Jun 2020 12:01:09 GMT

23

Connection: close
Etag: W/"eb-yRFMnpxgra7U0vsHSyPsU/9xaRI"
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *

{"data":{"__type":{"name":"String","description":"The `String` scalar type represents textual data, represented as UTF-8 character sequences. The String type is most
often used by GraphQL to represent free-form human-readable text."}}}

24

5. EXTENDED INFORMATION

5.1. PORT SCAN

Please review the following open ports. You should ensure there are no unnecessary ports or services open.

Host Port Service Version
192.168.0.70 4000 http

25

6. APPENDIX A: WEB APPLICATION DEFENSIVE STRATEGIES

6.1. VALIDATING INPUT

Input validation is an important defence strategy in preventing SQL injection, code injection, cross site
scripting and a host of other vulnerabilities. The aim of input validation is to ensure that data processed by the
application contains only known good characters and that all others are discarded.

There are two high approaches that can be adopted to achieve this aim: white listing and black listing. It is
widely accepted that the white list approach is the most secure option. However, where possible a two tiered
approach to input validation is beneficial.

Black Listing: Reject Known Bad

Note: Black listing should not be used in isolation but as a complementary measure to white listing.Data that
successfully passes the black list filter should then be validated using the white list approach.

Black listing is the process of rejecting known bad input. This technique receives a lot of criticism from security
purists because it is impossible to know all dangerous character sequences ahead of time. Whilst this is true, a
black list approach can be a good first line of defence against attempts to discover and exploit vulnerabilities
within the application. Any user violates the black list filter should have any active sessions invalidated (logged
out) and the event should be logged. In some circumstances an alerting process may be appropriate,
depending on the sensitivity of the chosen black list and the expected volume of false positives.

• Create a black list containing characters and character sequences which are associated with the attack

or attacks.

• Decode all input until no further decoding is possible before comparing against the black list.

• Users who violate the filter should have their session invalidated and a logging and/or alerting process

should be invoked.

• Black listing should only be used as a complementary measure to white listing. Data that successfully

passes the black list filter should then be passed to the white list process.

White Listing: Allow Known Good

White listing is the process of validating input to ensure it contains only known good (safe) characters and is
constructed in an expected manner. This approach is preferred over black listing since it does not require that
the developer know all potentially dangerous characters ahead of time. A white list filter should be context
dependant and be as restrictive as possible. Potential features to validate include:

• Data contains only permitted, safe characters.

• The data is of a certain length (e.g. falls between a minimum and maximum length).

• The data matches a defined regular expression (e.g. to validate the structure of an email address).

Care should be taken to ensure the white list is sufficiently restrictive to be secure whilst allowing the user to
include all of the characters he/she needs to interact with the application.

Sanitising (Converting) Output

Whenever data that originated from a user or an out of bound channel is copied into a servers’ response it
should be HTML encoded to sanitise potentially dangerous characters. HTML encoding is the process of
converting characters to their HTML equivalents. The converted character appears the same as the original
character when viewed in a web browser but does not affect the structure of the HTML document.

The recommended approach is to HTML encode all non-alphanumeric characters to ensure that all special
characters that could be useful in constructing a malicious script are converted.

The following characters should always be converted to their inert HTML equivalents before being included
within the page:

26

Character HTML Equivalent

“ "e;

‘ '

& &

< <

> >

Additional characters can be converted to HTML equivalents using their character code in decimal prefixed
with&# and terminated with a semicolonas follows:

Character HTML Equivalent

; ;

+ +

XSS: Remove Unnecessary Exploit Vectors.

Performing input validation and output sanitisation will form a robust defence against reflected and stored
cross site scripting vulnerabilities. However there are a number of circumstances where cross site scripting
vulnerabilities may still be possible. There are a number of locations where it is inherently dangerous to insert
user supplied data.

Where possible user supplied data should not be included within existing scripts. Doing so increases the
chances that an input validation filter can be bypassed since the attacker does not need as many special
characters such as< and>to construct a malicious script.

27

6.2. AUTHENTICATION

Enforce Password Complexity

Enforcing minimum password strength can greatly improve authentication security, especially when combined
with an account lockout policy.

Factors to consider are:

• Minimum Password Length (8 characters and above is industry standard).

• Enforcing mixed case characters.

• Mandatory requirement for numeric and special characters.

• Reject attempts to configure a password that is the same as or derived from the username.

• Prevent users from configuring a common weak password by comparing it to a word list of known

weak passwords.

The benefit of adopting all of the above restrictions is that users are forced into selecting a secure password
that cannot be easily cracked via a remote dictionary/brute force attack. The downside to this approach is that
users are more likely to write a password down if it is difficult to remember.

Prevent Dictionary / Brute Force Attacks

There are a number of approaches to prevent or slow down dictionary and brute force attacks against an
authentication system. One of the most effective approaches is to disable user accounts following a defined
number of failed authentication attempts. The account should remain disabled until either an administrator or
the legitimate user re-enables the user account. Some applications simply lock the account for a predefined
time period such as 30 minutes to slow down the dictionary attack.

The following account lockout policies offer some potential scenarios to consider:

• Lockout After X Bad Attempts: Administrator Re-Enable

This approach requires an administrator or moderator to re-enable locked accounts. This approach is

typically only viable for applications that have a relatively small number of users. Applications with

thousands of users who most likely generate more than an acceptable number of account related

support requests. The main benefit of this system is that the administrator is able to investigate the

reason for the account lockout. Systems that require a high level of security such as internet banking

should employ this system (along with external written or phone verification).

• Lockout After X Bad Attempts: User Re-Enable

An effective method of enforcing account lockouts without incurring the administrative overhead is to

allow the legitimate user to re-enable their own user account. The process to re-enable the account

should be sufficiently secure; one approach is to send the user an email containing a time limited link

to their registered email address. The link should direct the user to a portion of the application that

permits them to answer a security question which will then reset the password. This approach does

have security risks associated with it. Firstly, email could be intercepted by a malicious third party

who may then attempt to exploit the password reset process. However, providing the validation

process is suitably secure, the system should offer a high enough level of security for most

applications.

• Lockout after X Bad Attempts: Re-Enable Following X Minutes

28

A less secure option than the previously described methods is to suspend a user account for a

predefined time period (e.g. 30 mins). Once the time period has expired the account is re-enabled.

This method will slow down an attempt to guess passwords via a dictionary attack but may not

prevent it.

Implement a CAPTCHA System

A CAPTCHA (“Completely Automated Public Turing test to tell Computers and Humans Apart”) is a type of
challenge response system where the user is asked to enter numbers and letters that appear within an image
displayed by the web application, in order to prevent automated attacks against the authentication systems.
This method can provide an excellent level of security without increasing the administrative overhead. Some
research into CAPTCHA systems has demonstrated that automated attacks are possible under certain
circumstances, however the effort required to attack such a system is great enough to deter the majority of
attackers.

Validate Credentials Properly

Ensure that your username and password verification code is secure.

• Allow a wide range of characters within the username and password.

• Perform case sensitive validation.

• Allow usernames and passwords to be up to 20 characters in length.

Prevent Information Disclosure

Use a standard error message for authentication attempts that does not disclose which component failed
authentication.

Do not disclose whether or not a username is valid within password recovery functionality. For example, use
the following message instead. “You will receive an email allowing you reset your password if the account
entered is valid on the system”.

Prevent Misuse of Password Change Functionality

Password change functionality should be restricted to authenticated sessions. Users should be required to
enter their old password as well as the new password. All username information should be stored server side
and the client should not be allowed to specify a username within this process.

